The Structure of the Neutron and the BoNuS experiment

Gabriel Niculescu
James Madison University
Baryons 2016
Motivation

Probing the longitudinal structure of the nucleon (in 7 easy steps!):

- Take a nucleon. Move it real fast along z. Def. l.c. mom.: \(P_+ = P_0 + P_z \) (\(\gg M \))
- Hit a "parton" (q, g, ...) inside with a lepton of your choice…
- Measure its l.c. momentum: \(p_+ = p_0 + p_z \) (\(m \approx 0 \))
- Def. the Momentum Fraction: \(\xi = p_+ / P_+ \)
- In DIS: \(x \approx (q_z - n) / M \approx x_{Bj} = Q^2 / 2Mn \) (in the target rest frame)

Probability:

\[
F_1(x) = \frac{1}{2} \sum_i e_i^2 q_i(x)
\]

- Because of spin-1/2: 2nd sf \(F_2(x) \)

\(^\ast)\) Advantage: Boost-independent

Gabriel Niculescu – Baryons 2016, FSU
\[
\frac{d\sigma}{d\Omega dE} = \sigma_{\text{Mott}} \left(\frac{F_2(x)}{\nu} + 2\tan^2 \frac{\theta_e}{2} \frac{F_1(x)}{M} \right); \quad F_2(x, Q^2) = x \sum_{f=\text{up, down, ...}} z_f^2 \left(q_f(x, Q^2) + \bar{q}_f(x, Q^2) \right)
\]

Motivation

\[F_1(x) = \frac{1}{2} \sum_i e_i^2 q_i(x)\]

So sf give access to PDFs!

\(q_f(x \to 1)\) for both nucleons is a crucial test of valence quark models

- Isospin, SU(6) breaking, pQCD,…
- Precise PDFs at large \(x\) needed as input for LHC, neutrino experiments, etc.
 - Large \(x\), medium \(Q^2\) evolves to medium \(x\), large \(Q^2\)
 - Also: NUCLEAR structure functions
- Moments can be directly compared with OPE (twist expansion), Lattice QCD and Sum Rules
 - All higher moments are weighted towards large \(x\)
- Quark-Hadron Duality

\[M_n^{\text{CN}}(Q^2) = \int_0^\infty dx x^{n-2} F_2(x, Q^2) = \sum_{\tau=2k}^{\infty} E_{\tau\tau}(\mu, Q^2) O_{\tau\tau}(\mu) \left(\frac{\mu^2}{Q^2} \right)^{1/2(\tau-2)} + \text{TM corr.}\]
Behavior of PDFs still unknown for \(x \to 1 \)

- \(SU(6) \): \(\frac{d}{u} = \frac{1}{2} \), \(\Delta \frac{u}{u} = \frac{2}{3} \), \(\Delta \frac{d}{d} = -\frac{1}{3} \) for all \(x \)
- Relativistic Quark model: \(\Delta u \), \(\Delta d \) reduced
- Hyperfine effect (1-gluon-exchange): Spectator spin 1 suppressed, \(\frac{d}{u} \to 0 \), \(\Delta \frac{u}{u} \to 1 \), \(\Delta \frac{d}{d} \to -\frac{1}{3} \)
- Helicity conservation (pQCD): Spectator spin \(S_z \neq 0 \) suppressed, \(\frac{d}{u} \to 1/5 \), \(\Delta \frac{u}{u} \to 1 \), \(\Delta \frac{d}{d} \to 1 \)
- Orbital angular momentum: can explain slower convergence to \(\Delta \frac{d}{d} = 1 \)

Plenty of data on proton \(\to \) mostly constraints on \(u \) and \(\Delta u \)

Knowledge on \(d \) limited by lack of free neutron target (nuclear binding effects in \(d \), \(^3\)He)

Large \(x \) requires very high luminosity and resolution; binding effects become dominant uncertainty for the neutron
Motivation BoNuS Results Outlook

d/u (x → 1) ...

Assuming charge independence
(= invariance under 180° rotations in isospin space):

\[
\frac{F_{2n}}{F_{2p}} \approx \frac{1 + 4d/u}{4 + d/u} \Rightarrow
\]

\[
d \approx \frac{4 F_{2n}/F_{2p} - 1}{4 - F_{2n}/F_{2p}}
\]

\[
F_{2n}/F_{2p} = F_{2d}/F_{2p} - 1 ???
\]

Neutron data limited by “Nuclear Binding Uncertainties”

Gabriel Niculescu – Baryons 2016, FSU
Motivation

To access d/u...

- Use both charged and neutral lepton probes. Possible processes: W/Z production, PV DIS, charge exchange...
 - The cleanest, most direct approach.
 - No charge symm. assumptions
 - Limitation in stat. precision
- Use different targets, i.e. p & n
 - Free neutrons decay.
 - Impossible to make a dense target.
- Alternatives: use weakly bound nuclei (d) and/or Mirror nuclei (3He, 3H)

Nuclear Model uncertainties: (Fermi motion, off-shell effects (binding), structure modifications (EMC effect), extra pions/Deltas, coherent effects, 6-quark bags...)

BoNuS Results

Outlook

- Magnetic bottle: $10^3 - 10^4$ n/cm² [TU München]
- Typical proton target: $4 \cdot 10^{23}$ p/cm² [10 cm LH] 10^{14} p/cm² [HERMES]

Gabriel Niculescu – Baryons 2016, FSU
For example...

→ using off-shell model, will get *larger* neutron
 cf. light-cone model

→ but will get *smaller* neutron *cf. no nuclear effects*
 or *density* model

Even Fermi motion corrections become large at large x.
Alternative: Spectator Tagging

\[d(e,e'p_s)X \]

\[p_n = (M_D - E_S, -\vec{p}_S); \quad \alpha_n = 2 - \alpha_S \]

\[M^*^2 = p_{n\mu}^\mu p_{n\mu}^\mu \]

Motivation

BoNuS

Results

Outlook

\[x = \frac{Q^2}{2p_n^\mu q_\mu} \approx \frac{Q^2}{2M\nu(2-\alpha_S)} \]

\[W^*^2 = (p_n + q)^2 = M^*^2 + 2((M_D - E_S)\nu - \vec{p}_n \cdot \vec{q}) - Q^2 \]

\[\approx M^*^2 + 2M\nu(2-\alpha_S) - Q^2 \]
Motivation BoNuS Results Outlook

Spectator Tagging Limitations

Finite coverage of WF

Final State Interactions

BoNuS Results

EIC

“BoNuS”

“Deeps”

Binding Effects

$R_n \equiv F_2^{(\text{eff})}(W^2, Q^2, p^2)/F_2^n(W^2, Q^2)$
Motivation

BoNuS

Results

Outlook

Spectator Tagging. Enter: BoNuS

BoNuS

Gas

Electron

Multiplier

Helium/DME at 80/20 ratio

Thin Al-Mylar Window

Thin Al-Mylar Cathode

3 GEMs

Readout pad and electronic

Drift Region

7 atm D_2 gas

Thin-wall High Pressure Gas Target

Møller el.

e$^-$ to CLAS

CLAS

backwards
BoNuS RTPC

Gas

Electron Multiplier

Motivation

BoNuS Results

Outlook

BoNuS RTPC

7 atm D_2 gas

Møller el. e^- (to CLAS)

dE/dx from charge along track (particle ID)

Helium/DME at 80/20 ratio

- Thin Al Mylar Window
- Thin Al Mylar Cathode
- Gain Stage
- OEM (Gas Electron Multiplier)
- Readout Electric (pads)
- Readout Connections

Did it work?

Motivation

BoNuS Results

Outlook

F2

F2n

F2p

FSI: Cosyn et al.

EMC Ratio

Duality

Gabriel Niculescu – Baryons 2016, FSU
BoNuS: Truncated Moments

Motivation

BoNuS Results

Outlook

![Graph showing truncated moments](image-url)
Motivation

BoNuS: FSI

Results

Outlook

BoNuS: FSI

FSI: Cosyn et al.

\[
R = \text{ratio of tagged SF in } d(e,e'p) \text{ to “free” n SF, vs. momentum and angle (relative to } q \text{ vector) of spectator } p_s
\]

Beam = 4 GeV, } q^* = 1.66 \text{GeV}^*
...in the not so distant future...

BoNuS12: E12-06-113

- One of the “Flagship” 12 GeV-era experiments!
- Data taking of 35 days on D₂ and 5 days on H₂ with
 \[L = 2 \cdot 10^{34} \text{ cm}^2 \text{ sec}^{-1} \]
- Planned BoNuS detector DAQ and trigger upgrade
- DIS region with
 - \[Q^2 > 1 \text{ GeV}^2/\text{c}^2 \]
 - \[W *> 2 \text{ GeV} \]
 - \[p_s > 70 \text{ MeV/ c} \]
 - \[10^\circ < \theta_{pq} < 170^\circ \]
- Extend to higher momenta using central detector alone

Gabriel Niculescu – Baryons 2016, FSU
Motivation BoNuS Results Outlook

Plans for “12” GeV

BoNuS12 E12-06-113

- Replaces SiVtx and micro-megas barrel trackers
- Trigger rate about 2 KHz
- 18,000 “pads” read out at 5MHz over 10 µs
 1-2 mm radial spacing, 4 cm in z, 2 degrees in
 phi => Fully reconstructed track in 3D,
 suppression of < 5 MHz background through
 timing and vertex cuts
- Readout electronics: “DREAM” chip (Saclay)

- Full GEANT-4 MC based on
 CLAS12 GEMC
- < 4% p resolution
- < 2mm vertex resolution

Gabriel Niculescu – Baryons 2016
Expected Results

Dark Symbols: $W^* > 2$ GeV (x^* up to 0.8, bin centered $x^* = 0.76$)

Open Symbols: “Relaxed cut” $W^* > 1.8$ GeV (x^* up to 0.83)

Gabriel Niculescu – Baryons 2016, FSU
The future: JLab at 11 GeV

Projected 12 GeV d/u Extractions

- CJ12 - PDF + nucl uncert.
- BigBite 3H/3He DIS
- CLAS12 BoNuS
- CLAS12 BoNuS, relaxed cuts
- SoLID PVDIS

Gabriel Niculescu – Baryons 2016, FSU
The more distant future: EIC

Structure function of conditional DIS \(e + D \rightarrow e' + p + X \)

Recoil LC fraction \(\alpha_R = 0.98 - 1.02 \)
\(1.02 - 1.06 \)
\(1.06 - 1.10 \)

MEIC simulation
Int. luminosity \(10^6 \text{ nb}^{-1} \)
CM energy \(s_{eN} = 1000 \text{ GeV}^2 \)
\(x = 0.04 - 0.06, \quad Q^2 = 30 - 40 \text{ GeV}^2 \)

Kinematic limit

\(M_N^2 - t \) from recoil momentum [GeV^2]

\(F_{2D} \times (M_N^2 - t)^2 / (\text{residue})^2 \)

\(\gamma \) quads

Forward angle trackers
Roman pots

Central detector with endcaps

\(\gamma \) quads

Small-angle hadron detection

IP
Far forward hadron detection

\(n_z \)

Low-\(Q^2 \) electron detection

50 mrad beam (crab) crossing angle

Large-aperture electron quads

\(p \)
Motivation BoNuS Results Outlook

Quo Vadis?

Coincident spectator proton data is here!
- FSI important in fwd, perp. kinematics.
- “simple spectator” picture works well at low mom, bwd angles.
- Modifications of internal n structure (mom. dependent) still an open question.
- First results on “free” neutron: SF, moments, duality, binding effects in d.
- Data mining on existing 6 GeV data sets ongoing.

Lots more exciting experiments beginning with energy upgraded JLab!
- F_{2n} out to $x = 0.8$
- Detailed test of momentum-dependence of EMC effect

Need to develop advanced models to minimize & correct for:
- in-medium effects and FSI.

ULTIMATE GOAL: EIC - smoothly map out $p_{\text{spect.}}$ from 0 to 1 GeV/c.