New Results on $\gamma_vp \rightarrow \pi^+\pi^-p$ Cross Sections in the Second and Third Resonance Regions

Ralf W. Gothe

for

Gleb Fedotov

Baryons 2016

International Conference on the Structure of Baryons
May 16 - 20, Tallahassee, Florida

G. Fedotov, R. Gothe, V. Burkert, and V. Mokeev
Physics Motivation

- Extension of the Q^2-evolution results of electrocouplings to excited nucleons into the second and third resonance regions with new $\pi^+\pi^-p$ electroproduction data off protons in Q^2 bins of six times smaller size than previously achieved.

- Almost model independent check of the reliability of the extracted electrocouplings through the comparison of $N\pi$ and $\pi^+\pi^-p$ electroproduction results.

- Major source of information on electrocouplings of the nucleon resonances that decay preferentially to the $N\pi\pi$ final states.

- First detailed information on the structure of a new baryon state $N'(1720)3/2^+$ uncovered in the combined analysis of the CLAS $\pi^+\pi^-p$ photo- and electroproduction data.

- New opportunities to explore dynamic di-quark correlations and meson-baryon cloud effects in the structure of baryons with an orbital excitation of $L=1$.
Independent fits in different W-intervals
- green: 1.46<W<1.56 GeV
- magenta: 1.56<W<1.66 GeV
- red: 1.61<W<1.71 GeV
- blue: 1.66<W<1.76 GeV
- black: 1.71<W<1.81 GeV
result in self-consistent electrocouplings and hence offer sound evidence for their reliable extraction.

The electrocouplings of the $\Delta(1620)1/2^-$, $N(1650)1/2^-$, $N(1680)5/2^+$, $\Delta(1700)3/2^-$, and $N(1720)3/2^+$ resonances were obtained at $0.5 \text{ GeV}^2<Q^2<1.5 \text{ GeV}^2$, but just in three wide Q^2 bins.

Improved information on their Q^2 evolution expected from the new e1e data collected in six times smaller Q^2 bins will provide further insight into the structure of orbital nucleon excitations with $L=1$.

Branching Fractions in the 2nd and 3rd Resonance Regions

PDG values

<table>
<thead>
<tr>
<th>State</th>
<th>$\eta_{N\pi}$</th>
<th>$\eta_{N\eta}$</th>
<th>$\eta_{N\pi\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{11}(1440)$</td>
<td>0.55-0.75</td>
<td></td>
<td>0.3-0.4</td>
</tr>
<tr>
<td>$D_{13}(1520)$</td>
<td>0.55-0.65</td>
<td>0.0023</td>
<td>0.2-0.3</td>
</tr>
<tr>
<td>$S_{11}(1535)$</td>
<td>0.35-0.55</td>
<td>0.42</td>
<td>0.1-1.0</td>
</tr>
<tr>
<td>$S_{31}(1620)$</td>
<td>0.2-0.3</td>
<td></td>
<td>0.7-0.8</td>
</tr>
<tr>
<td>$S_{11}(1650)$</td>
<td>0.5-0.9</td>
<td>0.05-0.15</td>
<td>0.1-0.2</td>
</tr>
<tr>
<td>$F_{15}(1680)$</td>
<td>0.65-0.7</td>
<td></td>
<td>0.3-0.4</td>
</tr>
<tr>
<td>$D_{13}(1700)$</td>
<td>0.12</td>
<td></td>
<td>0.85-0.95</td>
</tr>
<tr>
<td>$D_{33}(1700)$</td>
<td>0.1-0.2</td>
<td></td>
<td>0.8-0.9</td>
</tr>
<tr>
<td>$P_{11}(1710)$</td>
<td>0.05-0.2</td>
<td>0.1-0.3</td>
<td>0.4-0.9</td>
</tr>
<tr>
<td>$P_{13}(1720)$</td>
<td>0.11</td>
<td>0.04</td>
<td>>0.7</td>
</tr>
</tbody>
</table>

The analysis of the $e1e$ data measured with CLAS in Hall-B at JLab will be presented in this talk.
New N'(1720)3/2+ State and its Properties

A successful description of $\pi^+\pi^-p$ photo- and electro-production cross sections at $Q^2=0, 0.65, 0.95,$ and 1.30 GeV^2 has been achieved by implementing a new N'(1720)3/2+ state with Q^2-independent hadronic decay widths of all resonances that contribute at $W\sim1.7 \text{ GeV}$, that allows us to claim the existence of a new N'(1720)3/2+ state.

Table: Resonance Cross Sections

<table>
<thead>
<tr>
<th>Resonance</th>
<th>BF($\pi\Delta$), %</th>
<th>BF(pp), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>N'(1720)3/2+ electroproduction</td>
<td>47-64</td>
<td>3-10</td>
</tr>
<tr>
<td>N'(1720)3/2+ photoproduction</td>
<td>46-62</td>
<td>4-13</td>
</tr>
<tr>
<td>N(1720)3/2+ electroproduction</td>
<td>39-55</td>
<td>23-49</td>
</tr>
<tr>
<td>N(1720)3/2+ photoproduction</td>
<td>38-53</td>
<td>31-46</td>
</tr>
<tr>
<td>$\Delta(1700)3/2^-$ electroproduction</td>
<td>77-95</td>
<td>3-5</td>
</tr>
<tr>
<td>$\Delta(1700)3/2^-$ photoproduction</td>
<td>78-93</td>
<td>3-6</td>
</tr>
</tbody>
</table>

Mass: 1.715-1.735 GeV
Width: 120 6 MeV

Mass: 1.743-1.753 GeV
Width: 112 8 MeV

N'(1720)3/2+
Electron Identification

Electrons are identified by their coincident signals produced in the SC, DC, EC and CC detector elements as the first in time particles.

- Total energy deposited in the electron calorimeter (EC) divided by electron momentum versus electron momentum.
- Left 6 plots represent real data distributions for the 6 CLAS sectors, while the 6 plots on the right side represent the corresponding Monte-Carlo distributions.
- We identify events enclosed by the red curves as electrons.
To identify hadrons information from the drift chambers (DC) and time-of-flight detector paddles (SC) are used.

β versus momentum distribution snapshot for positively charged particles seen by ToF scintillator paddle 27 of CLAS sector one. Black dashed curves are theoretical calculations with exact hadron mass assumptions. Events between the two purple and two red dashed curves are selected as π^+ and proton candidates, respectively.
Topologies and Exclusivity Cuts

<table>
<thead>
<tr>
<th>Topology</th>
<th>Statistics (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^- missing</td>
<td>≈ 70</td>
</tr>
<tr>
<td>π^+ missing</td>
<td>≈ 10</td>
</tr>
<tr>
<td>proton missing</td>
<td>≈ 10</td>
</tr>
<tr>
<td>exclusive</td>
<td>≈ 10</td>
</tr>
</tbody>
</table>
Radiative corrections were applied on a level of cross sections and the overall normalization was checked by comparison of the elastic cross section with the Bosted parameterization.
\[N\pi^+\pi^- \text{ Electroproduction Kinematic Coverage} \]

\[p\pi^+\pi^- \text{ event yields over } W \text{ and } Q^2. \] Gray shaded area new e1e data set, hatched area at low \(Q^2 \) already published e1c data by G. Fedotov et al. and hatched area at higher \(Q^2 \) published data in one large \(Q^2 \) bin by M. Ripani et al.
Ratio of the elastic cross section to the P. Bosted parameterization plotted versus θ_e. The parameterized cross sections are “radiated” and compared to the e1e elastic cross sections that are correspondingly not corrected for radiative effects.

Good agreement in all 6 sectors
Kinematic Variables

\[ep \rightarrow e' p' \pi^+ \pi^- \text{ in single photon exchange approximation} \quad \gamma_vp \rightarrow p' \pi^+ \pi^- \]

Final hadrons are described by 5 independent variables

\[
M_{\pi^+ \pi^-}, M_{\pi^+ p}, \theta_p, \varphi_p, \alpha_p
\]
\[
M_{\pi^-}, M_{\pi^- p}, \theta_{\pi^-}, \varphi_{\pi^-}, \alpha_{\pi^-}
\]
\[
M_{\pi^+}, M_{\pi^+ p}, \theta_{\pi^+}, \varphi_{\pi^+}, \alpha_{\pi^+}
\]

All three sets of hadronic variables are used to extract cross sections. The difference between total cross sections obtained by the integration over various sets of hadronic variables is interpreted as systematic uncertainty.
Definition of Final Hadron Angles
\[\frac{d\sigma}{dW dQ^2 dM_{\pi^+\pi^-} d\Omega d\alpha_{\pi^-}} = \frac{1}{F \cdot R} \frac{\left(\frac{\Delta N_{\text{full}}}{Q_{\text{full}}} - \frac{\Delta N_{\text{empty}}}{Q_{\text{empty}}} \right)}{\Delta W \Delta Q^2 \Delta \tau \left(\frac{l \rho N_A}{q_e M_H} \right)} \]

\[\Delta \tau = \Delta M_{\pi^+\pi^-} + \Delta M_{\pi^+\pi^-} - \Delta(-\cos(\theta_{\pi^-})) \Delta \varphi_{\pi^-} - \Delta \alpha_{\pi^-} \]

\(\Delta N_{\text{full}}\) and \(\Delta N_{\text{empty}}\) are the numbers of events inside a seven-dimensional bin for runs with hydrogen - and empty target, respectively. \(F\) is the efficiency determined by the Monte Carlo simulation. \(R\) is the radiative correction factor. \(Q_{\text{full}}\) and \(Q_{\text{empty}}\) are the integrated Faraday cup charges for runs with hydrogen - and empty target, respectively, and \(q_e\) is the elementary charge. \(\rho\) is the density of liquid hydrogen at \(T = 20\) K. \(l\) is the length of the target (\(l = 2\) cm). \(M_H\) is the molar density of the natural mixture of hydrogen and \(N_A\) is Avogadro's number. \(\Delta W\) and \(\Delta Q^2\) are kinematical bins determined by the electron scattering kinematics. \(\Delta \tau\) is the hadronic five-dimensional kinematic phase-space element.

Due to statistical limitations only single-fold differential cross sections were analyzed:

\[\frac{d\sigma}{dM_{\pi^+\pi^-}} = \int \frac{d^5\sigma}{d^5\tau} d\tau_{M_{\pi^+\pi^-}}^A; \quad d\tau_{M_{\pi^+\pi^-}}^A = dM_{\pi^+\pi^-} d\Omega_{\pi^-} d\alpha_{\pi^-} \]

\[\frac{d\sigma}{dM_{\pi^+p}} = \int \frac{d^5\sigma}{d^5\tau} d\tau_{M_{\pi^+p}}^A; \quad d\tau_{M_{\pi^+p}}^A = dM_{\pi^+p} d\Omega_{\pi^-} d\alpha_{\pi^-} \]

\[\frac{d\sigma}{d(-\cos(\theta_{\pi^-}))} = \int \frac{d^5\sigma}{d^5\tau} d\tau_{\theta_{\pi^-}}^A; \quad d\tau_{\theta_{\pi^-}}^A = dM_{\pi^+\pi^-} dM_{\pi^+p} d\varphi_{\pi^-} d\alpha_{\pi^-} \]

\[\frac{d\sigma}{dM_{\alpha_{\pi^-}}} = \int \frac{d^5\sigma}{d^5\tau} d\tau_{\alpha_{\pi^-}}^A; \quad d\tau_{\alpha_{\pi^-}}^A = dM_{\pi+\pi^-} dM_{\pi^+p} d\Omega_{\pi^-} d\alpha_{\pi^-} \]

\(d^5\tau = dM_{\pi^+\pi^-} dM_{\pi^+p} d\Omega_{\pi^-} d\alpha_{\pi^-}\)
New 2π Event Generator

- Based on JM15 and the newest data.
- Written on C++.
- Takes into account the cross section dependence on the beam energy.
- Allows to obtain cross section values directly from the event generator (EG).
- EG generates phase space distributions and applies the cross section as weight to each event.

List of data included:

Electroproduction

1) CLAS data at $E_{beam} = 2.445$, $E_{beam} = 4$ GeV

2) CLAS data at $E_{beam} = 1.515$ GeV

Photoproduction

3) CLAS g11a experiment
 E. Golovach et.al. CLAS ANALYSIS NOTE (under review)

 ABBHM Collab., Phys. Rev. 175, 1669 (1968)

More information on new EG available on Iu. Skorodumina’s wiki page:
https://clasweb.jlab.org/wiki/index.php/NEW_2PI_EVENT_GENERATOR
New EG in Comparison with Experimental Data

- Circles – model
- Curves – event generator
Combination of all available topologies allows to minimize contributions from zones with zero acceptance.

New advanced method to fill zones with zero acceptance based on the new 2π event generator.
Twelve bins in Q^2 are available.
Green dots represent published data (Fedotov et al., PRC79, 015204 (2009)), while the blue dots represent the new e1e data. Good agreement in overlapped areas.
Preliminary data on $\gamma_{\nu}p\rightarrow\pi^{+}\pi^{-}p$ cross sections were obtained for W from 1.3 GeV to 1.825 GeV and Q^{2} from 0.4 GeV2 to 1 GeV2.

Kinematic coverage and statistics exceed the previously available CLAS data and allow for a six times finer binning in Q^{2}.

The phenomenological analysis of this data will considerably extend the available information on the Q^{2} evolution of the high lying N* electrocouplings.

Analysis of this data together with $\pi^{+}\pi^{-}p$ photoproduction data will provide first detailed access to the structure of the new baryon state N’(1720)3/2$^{+}$.

Conclusions