Angular distribution of exclusive dielectron production in pion-nucleon collisions

Enrico Speranza

with Miklós Zétényi and Bengt Friman

Polarization and dilepton anisotropy in pion-nucleon collisions

Baryons 2016
Florida State University
Tallahassee, May 19, 2016
Introduction

$\pi N \rightarrow R \rightarrow Ne^+e^-$

- Elementary reactions are important for nuclear collisions (W. Przygoda talk)
- HADES studied pion induced reactions at $\sqrt{s} = 1.49$ GeV
 Nearby resonances: N(1440), N(1520), N(1535), Δ(1600)

The goal:

Angular distributions of the dilepton

Information on the polarization states of the resonance

Help disentangle different sources in hadronic and nuclear collisions
Introduction

Elementary reactions are important for nuclear collisions (W. Przygoda talk)

HADES studied pion induced reactions at $\sqrt{s} = 1.49$ GeV

Nearby resonances: $N(1440)$, $N(1520)$, $N(1535)$, $\Delta(1600)$

The goal:

Angular distributions of the dilepton

Information on the polarization states of the resonance

Help disentangle different sources in hadronic and nuclear collisions
Study the anisotropy coefficient

\[
\frac{d\sigma}{dM \, d\cos\theta_{\gamma^*} \, d\cos\theta_e} \propto \Sigma_\perp (1 + \cos^2\theta_e) + \Sigma_\parallel (1 - \cos^2\theta_e)
\]

\[
\propto \mathcal{N} (1 + \lambda_\theta(\theta_{\gamma^*}, M) \cos^2\theta_e)
\]

\[
\lambda_\theta(\theta_{\gamma^*}, M) = \frac{\Sigma_\perp - \Sigma_\parallel}{\Sigma_\perp + \Sigma_\parallel}
\]

\(\lambda_\theta(\theta_{\gamma^*}, M)\) contains information on the polarization of the virtual photon and hence on the quantum numbers of the baryon resonance.
Study the anisotropy coefficient

\[
\frac{d\sigma}{dM \, d \cos \theta_{\gamma^*} \, d \cos \theta_e} \propto \Sigma_{\perp} (1 + \cos^2 \theta_e) + \Sigma_{\parallel} (1 - \cos^2 \theta_e) \\
\propto \mathcal{N} (1 + \lambda_\theta(\theta_{\gamma^*}, M) \cos^2 \theta_e)
\]

\[\lambda_\theta(\theta_{\gamma^*}, M) = \frac{\Sigma_{\perp} - \Sigma_{\parallel}}{\Sigma_{\perp} + \Sigma_{\parallel}}\]

\[\lambda_\theta(\theta_{\gamma^*}, M)\] contains information on the polarization of the virtual photon and hence on the quantum numbers of the baryon resonance.
Angular momentum coupling

\[\vec{J}_R = \vec{L} + \vec{S}_N \]
\[M_R = M_L + M_N = M_N = \pm \frac{1}{2} \]

\[|\pi(p); N(-p)\rangle \propto \sum_{lm} Y_{LM}^*(\theta, \phi) |LM\rangle \quad (Y_{LM}(\theta = 0, \phi) = 0 \text{ for } M_L \neq 0) \]

- Resonance with \(J_R = \frac{1}{2} \) \(\Rightarrow \) all the states are equally populated
 \(\Rightarrow \) Isotropic distribution in \(\theta, \gamma^* \)

- Resonance with \(J_R \geq \frac{3}{2} \) \(\Rightarrow \) not all the states are populated
 \(\Rightarrow \) Anisotropic distribution in \(\theta, \gamma^* \)
Examples

- Drell-Yan process $q\bar{q} \rightarrow e^+e^-$

 $$
 \frac{d\sigma}{d\Omega_e} \sim 1 + \cos^2 \theta_e
 $$

 $\lambda_\theta = +1$ Virtual photon is completely transverse polarized

- Pion annihilation process $\pi^+\pi^- \rightarrow e^+e^-$

 $$
 \frac{d\sigma}{d\Omega_e} \sim 1 - \cos^2 \theta_e
 $$

 $\lambda_\theta = -1$ Virtual photon is completely longitudinal polarized

- $X(3872)$ decay (CDF Collaboration, PRL 98 (2007) 132002)

Derive constraints on spin, parity and charge conjugation parity of the $X(3872)$ by comparing measured angular distributions of the decay products with predictions for different J^{PC} hypothesis
\[\pi N \rightarrow R \rightarrow Ne^+e^- \text{ cross section} \]

\[d\sigma = \frac{1}{4F} \sum |\mathcal{M}|^2 d\Phi^{(3)} \]

- **Matrix element**
 \[\sum |\mathcal{M}|^2 = H^{\mu\nu} L_{\mu\nu} \]

- **Lepton tensor**
 \[L_{\mu\nu} = 2q^2 \left(-g_{\mu\nu} + \frac{q_\mu q_\nu}{q^2} \right) - 8 \left(p_{e\mu} - \frac{q_\mu}{2} \right) \left(p_{e\nu} - \frac{q_\nu}{2} \right) \]

- **Invariant flux**
 \[F = \sqrt{(p_\pi \cdot p_N) - m_\pi^2 m_N^2} \]

- **Three-body phase space**
 \[d\Phi^{(3)} = \int dM^2 \frac{1}{2\pi} \frac{1}{16\pi^2} \frac{p_\rho}{\sqrt{s}} d\Omega_{\gamma^*} \frac{1}{16\pi^2} \frac{p_e^*(M^2, m_e^2, m_e^2)}{M} d\Omega_e \]
Models

- Gauge invariant vector meson dominance for $\rho^0 - \gamma^*$ coupling

$$\mathcal{L}_{\rho\gamma} = -\frac{e}{2g_\rho} F^{\mu\nu} \rho^0_{\mu\nu}$$

- Interactions for spin-1/2 resonances with π and ρ

$$\mathcal{L}_{R_{1/2} N\pi} = -\frac{g_{RN\pi}}{m_\pi} \bar{\psi}_R \Gamma_{\gamma^\mu} \bar{\tau} \psi_N \cdot \partial_\mu \bar{\pi} + \text{h.c.}$$

$$\mathcal{L}_{R_{1/2} N\rho} = \frac{g_{RN\rho}}{2m_\rho} \bar{\psi}_R \bar{\tau} \sigma^{\mu\nu} \tilde{\Gamma} \psi_N \cdot \bar{\rho}_{\mu\nu} + \text{h.c.}$$

$\Gamma = \gamma_5$ for $J^P = 1/2^+$, $\Gamma = 1$ for $J^P = 1/2^-$
Consistent interactions for higher spin resonances

- Lower spin components of the Rarita-Schwinger fields should not contribute
- Lagrangians must be invariant under the transformations:
 \[\psi_{\mu} \rightarrow \psi_{\mu} + i\partial_{\mu}\chi \]
 \[\psi_{\mu\nu} \rightarrow \psi_{\mu\nu} + \frac{i}{2}(\partial_{\mu}\chi_{\nu} - \partial_{\nu}\chi_{\mu}) \]

- Gauge invariant operators:
 \[G_{\mu,\nu} = i(\partial_{\mu}\psi_{\nu} - \partial_{\nu}\psi_{\mu}) \]
 \[G_{\mu\nu,\lambda\rho} = -\partial_{\mu}\partial_{\nu}\psi_{\lambda\rho} - \partial_{\lambda}\partial_{\rho}\psi_{\mu\nu} + \frac{1}{2}(\partial_{\mu}\partial_{\lambda}\psi_{\nu\rho} + \partial_{\mu}\partial_{\rho}\psi_{\nu\lambda} + \partial_{\nu}\partial_{\lambda}\psi_{\mu\rho} + \partial_{\nu}\partial_{\rho}\psi_{\mu\lambda}) \]

\(\text{RN}_\pi\) vertex
\[\mathcal{L}_{R3/2N\pi} = \frac{ig_{\text{RN}_\pi}}{m_{\pi}^2} \bar{\Psi}_{R}^{\mu}\bar{\gamma}_N^{\nu}\gamma_\rho \tilde{\psi}_{\mu\nu}\cdot \bar{\rho}_{\mu\rho} \]
\[\mathcal{L}_{R5/2N\pi} = -\frac{g_{\text{RN}_\pi}}{m_{\pi}^4} \bar{\Psi}_{R}^{\mu\nu}\bar{\gamma}_N^{\rho}\gamma_\lambda \tilde{\psi}_{\mu\nu}\cdot \bar{\rho}_{\mu\nu} \]

\(\psi_{\mu} = \gamma^\nu G_{\mu,\nu}, \psi_{\mu\nu} = \gamma^\lambda\gamma^\rho G_{\mu\nu,\lambda\rho}. \gamma = \gamma_5 \) for \(J^P = 3/2^-\), \(5/2^+\) and \(\gamma = 1\) otherwise. \(\bar{\gamma} = \gamma_5\gamma.\)

The model presents two other kinds of \(RN\rho\) vertices

Anistropy coefficients

\[\sqrt{s} = 1.49 \text{ GeV} \quad M = 0.5 \text{ GeV} \]

\[|A_s|^2 \]

\[|A_s^i + A_u^i|^2 \]

- Spin and parity of the intermediate resonance is reflected in a characteristic angular dependence of \(\lambda_\theta \)
- The \(u \)-channel is negligible on-shell
Angular distributions

\[\sqrt{s} = 1.49 \text{ GeV} \quad M = 0.5 \text{ GeV} \]

\[|A_s^i + A_u^i|^2 \]

- \(N(1440) \) and \(N(1520) \) are dominant
- Coupling constants are determined from decay rates (PDG)
N(1440) and N(1520)

\[\sqrt{s} = 1.49 \text{ GeV} \quad M = 0.5 \text{ GeV} \]

\[|A^s_i + A^u_i|^2 \]

\[|A^s_i + A^u_i|^2 \]

- Relative phase of the couplings is unknown. It can be determined by experiments
- \(\lambda_\theta \) does not depend strongly on the relative phase of the couplings
Invariant mass dependence for λ_θ

\[\sqrt{s} = 1.49 \text{ GeV} \]

\[\sum_i |A_s^i + A_u^i|^2 \quad N(1440), N(1520) \]

- $\lambda_\theta = \frac{\Sigma_\perp - \Sigma_\parallel}{\Sigma_\perp + \Sigma_\parallel} \to 1$ as $M \to 0$ (real photon limit $\Sigma_\parallel \to 0$)
- Rough binning both in M and θ_{γ^*} would be sufficient
Conclusions

Summary

▶ Anisotropy coefficient as a tool to understand which baryon resonance contributes
▶ We used consistent interactions for higher spin resonances
▶ Dependence on the channel for λ_θ
▶ N(1440) and N(1520) are dominant at $\sqrt{s} = 1.49\,\text{GeV}$. The relative phase of the couplings does not influence strongly the anisotropy coefficient, but it does affect the angular distributions
▶ Adding N(1535) or $\Delta(1600)$ does not influence strongly λ_θ

Outlook

▶ Add non-resonant (background) terms
▶ Study the hadronic final state ($\pi\pi N$)
▶ Study polarization effects in hot and dense nuclear systems
▶ Rough binning both in M and θ_{γ^*} would be sufficient to extract information on polarization
BACKUP
Angular distribution and spin density matrix

\[\frac{d\sigma}{dM \, d\cos \theta^\gamma \, d\cos \theta_e \, d\phi_e} \propto \sum_{\text{pol}} |\mathcal{M}|^2 \propto \sum_{\lambda, \lambda'} \rho^{\text{had}}_{\lambda, \lambda'} \rho^{\text{lep}}_{\lambda', \lambda} \]

Spin density matrices:
\[\rho^{\text{had}}_{\lambda, \lambda'} = \frac{e^2}{k^4} \epsilon^\mu(k, \lambda) H_{\mu \nu} \epsilon^{\nu}(k, \lambda')^* \]
\[\rho^{\text{lep}}_{\lambda', \lambda} = e^\mu(k, \lambda') L_{\mu \nu} \epsilon^{\nu}(k, \lambda)^* \]

\[\rho^{\text{lep}}_{\lambda', \lambda} = k^2 \begin{pmatrix} 1 + \cos^2 \theta_e & \sqrt{2} \cos \theta_e \sin \theta_e e^{i\phi_e} & \sin^2 \theta_e e^{2i\phi_e} \\ \sqrt{2} \cos \theta_e \sin \theta_e e^{-i\phi_e} & 2(1 - \cos^2 \theta_e) & \sqrt{2} \cos \theta_e \sin \theta_e e^{i\phi_e} \\ \sin^2 \theta_e e^{-2i\phi_e} & \sqrt{2} \cos \theta_e \sin \theta_e e^{-i\phi_e} & 1 + \cos^2 \theta_e \end{pmatrix} \]

\[\sum_{\text{pol}} |\mathcal{M}|^2 \propto (1 + \cos^2 \theta_e) (\rho^{\text{had}}_{-1, -1} + \rho^{\text{had}}_{1, 1}) + (1 - \cos^2 \theta_e) 2 \rho^{\text{had}}_{0, 0} \]

\[+ \sqrt{2} \cos \theta_e \sin \theta_e \left[e^{i\phi_e} (\rho^{\text{had}}_{-1, 0} + \rho^{\text{had}}_{0, 1}) + e^{-i\phi_e} (\rho^{\text{had}}_{1, 0} + \rho^{\text{had}}_{0, -1}) \right] \]

\[+ \sin^2 \theta_e (e^{2i\phi_e} \rho^{\text{had}}_{-1, 1} + e^{-2i\phi_e} \rho^{\text{had}}_{1, -1}) \].

\[\frac{d\sigma}{dM \, d\cos \theta^\gamma \, d\cos \theta_e \, d\phi_e} \propto 1 + \lambda_\theta \cos^2 \theta_e + \lambda_{\theta \phi} \sin 2\theta_e \cos \phi_e + \lambda_\phi \sin^2 \theta_e \cos 2\phi_e \]

\[\lambda_\theta = \frac{\rho^{\text{had}}_{-1, -1} + \rho^{\text{had}}_{1, 1} - 2 \rho^{\text{had}}_{0, 0}}{\rho^{\text{had}}_{-1, -1} + \rho^{\text{had}}_{1, 1} + 2 \rho^{\text{had}}_{0, 0}}, \quad \lambda_{\theta \phi} = \sqrt{2} \text{Re}(\rho^{\text{had}}_{-1, 0} + \rho^{\text{had}}_{0, 1}) \rho^{\text{had}}_{-1, -1} + \rho^{\text{had}}_{1, 1} + 2 \rho^{\text{had}}_{0, 0}, \quad \lambda_\phi = \frac{2 \text{Re}(\rho^{\text{had}}_{-1, 1})}{\rho^{\text{had}}_{-1, -1} + \rho^{\text{had}}_{1, 1} + 2 \rho^{\text{had}}_{0, 0}} \]
$$\sqrt{s} = 1.49 \text{ GeV} \quad M = 0.5 \text{ GeV}$$

$$|A_s^i + A_u^i|^2$$

$$|A_s^i + A_u^i|^2$$

▶ λ_θ does not depend strongly on the relative phase of the couplings
Adding $\Delta(1600)$

$\sqrt{s} = 1.49 \text{ GeV} \quad M = 0.5 \text{ GeV}$

$|A^i_s + A^i_u|^2$

$|A^i_s + A^i_u|^2$

λ_θ does not depend strongly on the relative phase of the couplings