Interference between ϕ and $\Lambda(1520)$ production channels in $\gamma p \rightarrow K^+ K^- p$ reaction near Threshold

Sun Young Ryu (RCNP, Osaka University)
The ϕ-meson production has the unique feature within gluon dynamics of being a result of OZI suppression due to the dominant $\bar{s}s$ structure.

\[\gamma p \rightarrow p \rho \]
\[\gamma p \rightarrow p \omega \]
\[\gamma p \rightarrow p \phi \]
Bumps in ϕ and $\Lambda(1520)$ Photoproduction

- The $\sqrt{s} = 2.1$ GeV bump in ϕ photoproduction has not yet been explained in detail 1.
- Similar bump in $\Lambda(1520)$ photoproduction 2.

1T. Mibe et al. (LEPS), PRL 95, 182001 (2005); H. Seraydaryan et al. (CLAS) PRC 89, 182001 (2005); B. Dey et al. (CLAS) PRC 89, 055206 (2014)

2H. Kohri et al. (LEPS), PRL 108, 092001 (2012)
Bumps in ϕ and $\Lambda(1520)$ Photoproduction

- Excitation of missing nucleon resonances 3
- Hidden-strangeness pentaquark state (in analogy to $J/\psi p$ pentaquark states 4)
- Rescattering processes 5
- **Interference effect** between ϕ and $\Lambda(1520)$ production channels

3A. Kiswandhi et al., PLB 691, 214 (2010)
4R. Aaij et al. (LHCb), PRL 115, 072001 (2015)
5S. Ozaki et al., PRC 80, 035201 (2009); H-Y. Ryu et al., PTEP 2014, 023D03 (2014)
Interference between $\phi(1020)$ and $\Lambda(1520)$

$$
\frac{d^2\sigma}{dm_{K^+K^-}dm_{K^-}p} \propto |M_\phi + M_{\Lambda(1520)} + M_{nr}|^2
$$

$$
\approx |M_\phi + M_{\Lambda(1520)}|^2 + |M_{nr}|^2,
$$

where M_ϕ and $M_{\Lambda(1520)}$ are the complex amplitudes for ϕ and $\Lambda(1520)$ production processes, respectively. M_{nr} represents non-resonant K^+K^-p production.
Interference between \mathcal{M}_ϕ and $\mathcal{M}_{\Lambda(1520)}$

Differential cross sections for the $\gamma p \to K^+ K^- p$ reaction via the ϕ and $\Lambda(1520)$ resonances:

$$\frac{d^2\sigma}{dm_{K^+ K^-} dm_{K^- p}} \bigg|_{\phi, \Lambda(1520)} \propto \left(\frac{a e^{i\psi_a}}{m^2_{\phi} - m^2_{K^+ K^-} + im_{\phi}\Gamma_{\phi}} \right) \left(\frac{b e^{i\psi_b}}{m^2_{\Lambda^*} - m^2_{K^- p} + im_{\Lambda^*}\Gamma_{\Lambda^*}} \right)^2,$$

where a and b denote the magnitudes of the Breit-Wigner amplitudes for ϕ and $\Lambda(1520)$.
Interference between \mathcal{M}_ϕ and $\mathcal{M}_\Lambda(1520)$

The integrated cross sections over the K^-p mass interval in the ϕ-$\Lambda(1520)$ interference region where the two resonances overlap 6:

$$\frac{d\sigma}{dm_{K^+K^-}} \propto \left| \frac{ae^{i\psi_a}}{m^2_\phi - m^2_{K^+K^-} + im_\phi \Gamma_\phi} + B(m_{K^+K^-})e^{i\psi_b} \right|^2$$

where $B(m_{K^+K^-})$ corresponds to the Breit-Wigner lineshape of $\Lambda(1520)$ projected onto the K^+K^- mass axis in the interference region.

Relative Phase ψ

\[
I(m_{K^+K^-}) = 2|aB(m_{K^+K^-})| \left(\frac{m^2_{\phi} - m^2_{K^+K^-}}{m^2_{\phi} - m^2_{K^+K^-}} \right) \cos \psi + \Gamma m_{\phi} \sin \psi \left(\frac{m^2_{\phi} - m^2_{K^+K^-}}{m^2_{\phi} - m^2_{K^+K^-}} \right)^2 + m_{\phi}^2 \Gamma^2
\]

where $\psi = |\psi_a - \psi_b|$.

- Consequently, only a single parameter ϕ, exists in the fit.
- Maximum constructive at $\psi = +\pi/2$
- Maximum destructive at $\psi = -\pi/2$.
Compton-Backscattered photon beam and a forward LEPS spectrometer at BL33LEP beam line, SPring-8.

\(\gamma p \rightarrow K^- K^+ p \) reactions at forward angles from the \(\phi \) production threshold (1.573 GeV) to 2.4 GeV.
A typical mass resolution is 30 MeV for 1 GeV kaons.
$P(\chi^2)$ Selection from Kinematic Fit

K^+K^- mode

K^-p mode

K^+p mode

Sun Young Ryu — ϕ-$\Lambda(1520)$ Interference — Page 11 of 19
MC Simulation for $\gamma p \rightarrow K^+ K^- p$ in all E_γ Ranges

1. $\gamma p \rightarrow \phi p \rightarrow K^- K^+ p$ based on E_γ-dependent SDME 7.
2. $\gamma p \rightarrow \Lambda(1520) K^+ \rightarrow K^- p K^+$ based on the decay angular distributions from LEPS results 8.
3. $\gamma p \rightarrow K^+ K^- p$ (non-resonant S-wave production)
4. $\gamma p \rightarrow K(896)^0 \Sigma^+ \rightarrow K^+ \pi^- p \pi^0$ based on SDME results 9.

7W.C. Chang et al. (LEPS) PRC 82, 015205 (2010)
8J. Chen, Ph.D thesis (2009)
9S.H. Hwang et al. (LEPS), PRL 108, 092001 (2012)
Template Fits except the Interference Region

$|\mathcal{M}_\phi|^2$ and $|\mathcal{M}_{\Lambda(1520)}|^2$ in the interference region will be estimated from the magnitudes of MC templates for ϕ and $\Lambda(1520)$ mass bands.
Fit with MC Templates for $\gamma p \rightarrow K^- K^+(p)$

- The invariant mass spectra for $K^+ K^-$ (left) and $K^- p$ (right) system
- MC data for $\phi(1020)$
- MC data for $\Lambda(1520)$
- MC data for non-resonant $K^+ K^- p$ production
Interference Yields \((K^+ K^-)\)

Dashed lines are from theoretical estimates with \(\psi = \pi/2\) (S. i. Nam et al.)
Integrated Yields and Phases \((K^+K^-)\)

![Graph showing integrated yields and phases](image)

- **Phase \(\Psi\)**

- **Number of events**

Legend
- \(\bullet\) \(K^+K^-\) mode
- \(\square\) \(K^-p\) mode
- \(\Delta\) \(K^+p\) mode

Sun Young Ryu — \(\phi-\Lambda(1520)\) Interference — Page 16 of 19
LEPS first observed the $\sqrt{s} = 2.1$ GeV bump in ϕ photoproduction (T. Mibe et al., PRL 95, 182001 (2005)).
Differential cross sections for $\gamma p \rightarrow K^+ \Lambda(1520)$ at forward K^+ angles ($0.8 < \cos \theta_{K^+}^* < 1.0$).
The ϕ-$\Lambda(1520)$ interference measurement is a good probe to study the origin of enhanced production cross sections for ϕ and $\Lambda(1520)$ near $\sqrt{s}=2.1\text{GeV}$.
The ϕ-$\Lambda(1520)$ interference measurement is a good probe to study the origin of enhanced production cross sections for ϕ and $\Lambda(1520)$ near $\sqrt{s}=2.1$GeV.

We reconfirmed the bump structure in the analysis without the ϕ-$\Lambda(1520)$ interference region. The difference between the cross sections obtained with and without the interference region is not large enough to account for the bump structure.
The ϕ-Λ(1520) interference measurement is a good probe to study the origin of enhanced production cross sections for ϕ and Λ(1520) near \(\sqrt{s}=2.1\)GeV.

We reconfirmed the bump structure in the analysis without the ϕ-Λ(1520) interference region. The difference between the cross sections obtained with and without the interference region is not large enough to account for the bump structure.

The relative phases suggest strong constructive interference for \(K^+K^-\) pairs observed at forward angles.
The ϕ-$\Lambda(1520)$ interference measurement is a good probe to study the origin of enhanced production cross sections for ϕ and $\Lambda(1520)$ near $\sqrt{s}=2.1$GeV.

We reconfirmed the bump structure in the analysis without the ϕ-$\Lambda(1520)$ interference region. The difference between the cross sections obtained with and without the interference region is not large enough to account for the bump structure.

The relative phases suggest strong constructive interference for K^+K^- pairs observed at forward angles.

The nature of the bump structure could originate from interesting exotic structures such as a hidden-strangeness pentaquark state, a new Pomeron exchange or rescattering processes via other hyperon states.